Math Colloquium Presentation, October 8, 2015

## Two-Child Paradox

Adam Clinch

A BRIEF LOOK INTO CONDITIONAL PROBABILITY

## Probability in General

* Probability of an event can be thought of as the ratio of the number of ways to have success divided by the total number of outcomes.

$$
\text { Probability }=\frac{\text { number of favorable outcomes }}{\text { number of total possible outcomes }}
$$

## General Probability

* Example of Regular Probability: What is the probability you roll two dice and their sum is 8 ?



## General Probability

* Example of Regular Probability: What is the probability you roll two dice and their sum is 8 ?

$$
\text { Probability }=\frac{\text { number of favorable outcomes }}{\text { number of total possible outcomes }}
$$

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bullet$ | 2 | 3 | 4 | 5 | 6 | 7 |
|  | 3 | 4 | 5 | 6 | 7 | 8 |
|  | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 5 | 6 | 7 | 8 | 9 | 10 |
|  | 6 | 7 | 8 | 9 | 10 | 11 |
| : : | 7 | 8 | 9 | 10 | 11 | 12 |

## General Probability

* Example of Regular Probability: What is the probability you roll two dice and their sum is 8 ?

$$
\text { Probability }=\frac{\text { total number of successes }}{36}
$$



## General Probability

* Example of Regular Probability: What is the probability you roll two dice and their sum is 8 ?

$$
\text { Probability }=\frac{5}{36}
$$

|  | $\bullet \bullet$ - $\bullet \bullet \bullet!:$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bullet$ | 2 | 3 | 4 | 5 | 6 | 7 |
|  | 3 | 4 | 5 | 6 | 7 | 8 |
|  | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 5 | 6 | 7 | 8 | 9 | 10 |
|  | 6 | 7 | 8 | 9 | 10 | 11 |
| : : | 7 | 8 | 9 | 10 | 11 | 12 |

## Conditional Probability

* Probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* Example of Conditional Probability: What is the probability you roll two dice and their sum is 8 , given that one of the dice is a 4?

|  | - |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 2 | 3 | 4 | 5 | 6 | 7 |
|  | 3 | 4 | 5 | 6 | 7 | 8 |
|  | 4 | 5 | 6 | 7 | 8 | 9 |
|  | 5 | 6 | 7 | 8 | 9 | 10 |
|  | 6 | 7 | 8 | 9 | 10 | 11 |
|  | 7 | 8 | 9 | 10 | 11 | 12 |

## Conditional Probability

* Probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* Example of Conditional Probability: What is the probability you roll two dice and their sum is 8, given that one of the dice is a 4?

Probability $=\frac{\text { total number of successes }}{\text { total number possible }}$


## Conditional Probability

* Probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* Example of Conditional Probability: What is the probability you roll two dice and their sum is 8 , given that one of the dice is a 4 ?

Probability $=\frac{\text { total number of successes }}{11}$


## Conditional Probability

* Probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* Example of Conditional Probability: What is the probability you roll two dice and their sum is 8 , given that one of the dice is a 4 ?


## Probability $=1 / 11$



## Conditional Probability

* Example of Conditional Probability: What is the probability you roll two dice and their sum is 8 , given that one of the dice is a 4 ?


## Quick Question: Why is it not 1/6?



## Conditional Probability

* Example of Conditional Probability: What is the probability you roll two dice and their sum is 8 , given that one of the dice is a 4 ?


## Quick Question: Why is it not 1/6?



* It all depends on the wording. We didn't know which die was the 4, but once we do, the probability changes. If I said, "What's the probability someone rolls a sum of 8 given that the first dice is a 4?" then it would be 1/6.


## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?
$\{B G, G B, B B, G G\}$

## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?


## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?


$$
1 / 2=50 \%
$$

## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

## \{BG, BB\}

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

## \{BG, BB\}

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?
\{BG, GB, BB, GG\}

## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

## \{BG, BB\}

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

## $\{B G, G B, B B, G G\}$

## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

## \{BG, BB

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

## $\{\mathrm{BG}, \mathrm{GB}, \mathrm{BB}, \mathrm{GA}]\{[\mathrm{BG}, \mathrm{GB}, \mathrm{BB}]$

## So, how did ours work?

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

## \{BG, BB\}

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?


## Two-Child Paradox

- The problem we just investigated is known as the two-child paradox or the boy-girl paradox.
- The problem was originally proposed in 1959 by Martin Gardner.
- Large controversy at the time whether it was $1 / 2$ or $1 / 3$, depending on how it was discovered that one of the children was a boy.
- However, if the supplied information changes the conditional probability, how does different types of information change the probability?



## What if it was a Tuesday?

* What if the question changed to the following:

Mr. Johnson has two children. At least one of them is a boy who was born on a Tuesday.
What is the probability that both children are boys?


Girl and Boy Family

|  | Tues |
| :--- | :--- |
| Mon | $(\mathrm{M}, \mathrm{T})(\mathrm{T}, \mathrm{M})$ |
| Tues | $(\mathrm{T}, \mathrm{T})(\mathrm{T}, \mathrm{T})$ |
| Wed | $(\mathrm{W}, \mathrm{T})(\mathrm{T}, \mathrm{W})$ |
| Thurs | $(\mathrm{Th}, \mathrm{T})(\mathrm{T}, \mathrm{Th})$ |
| Fri | $(\mathrm{F}, \mathrm{T})(\mathrm{T}, \mathrm{F})$ |
| Sat | $\mathrm{Sa}, \mathrm{T})(\mathrm{T}, \mathrm{Sa})$ |
| Sun | Su, T) (T, Su) |

Boy and Boy Family

|  | Tues |
| :---: | :---: |
| Mon | $(\mathrm{M}, \mathrm{T})(\mathrm{T}, \mathrm{M})$ |
| Tues | ???????? |
| Wed | $(\mathrm{W}, \mathrm{T})(\mathrm{T}, \mathrm{W})$ |
| Thurs | $(\mathrm{Th}, \mathrm{T})(\mathrm{T}, \mathrm{Th})$ |
| Fri | $(\mathrm{F}, \mathrm{T})(\mathrm{T}, \mathrm{F})$ |
| Sat | $\mathrm{Sa}, \mathrm{T})(\mathrm{T}, \mathrm{Sa})$ |
| Sun | $\mathrm{Su}, \mathrm{T})(\mathrm{T}, \mathrm{Su})$ |

Girl is Red and Boy is Blue

Girl and Boy Family

|  | Tues |
| :--- | :--- |
| Mon | $(\mathrm{M}, \mathrm{T})(\mathrm{T}, \mathrm{M})$ |
| Tues | $(\mathrm{T}, \mathrm{T})(\mathrm{T}, \mathrm{T})$ |
| Wed | $(\mathrm{W}, \mathrm{T})(\mathrm{T}, \mathrm{W})$ |
| Thurs | $(\mathrm{Th}, \mathrm{T})(\mathrm{T}, \mathrm{Th})$ |
| Fri | $(\mathrm{F}, \mathrm{T})(\mathrm{T}, \mathrm{F})$ |
| Sat | $\mathrm{Sa}, \mathrm{T})(\mathrm{T}, \mathrm{Sa})$ |
| Sun | Su, T) (T, Su) |

Boy and Boy Family

|  | Tues |
| :---: | :---: |
| Mon | $(\mathrm{M}, \mathrm{T})(\mathrm{T}, \mathrm{M})$ |
| Tues | $(\mathrm{T}, \mathrm{T})$ |
| Wed | $(\mathrm{W}, \mathrm{T})(\mathrm{T}, \mathrm{W})$ |
| Thurs | $(\mathrm{Th}, \mathrm{T})(\mathrm{T}, \mathrm{Th})$ |
| Fri | $(\mathrm{F}, \mathrm{T})(\mathrm{T}, \mathrm{F})$ |
| Sat | $\mathrm{Sa}, \mathrm{T})(\mathrm{T}, \mathrm{Sa})$ |
| Sun | $\mathrm{Su}, \mathrm{T})(\mathrm{T}, \mathrm{Su})$ |

Girl is Red and Boy is Blue

## Overall Summary of Two-Child Paradox

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Mr. Johnson has two children. At least one of them is a boy who was born on a Tuesday. What is the probability that both children are boys?

## Overall Summary of Two-Child Paradox

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

$$
\{B G, B B\}
$$

$$
1 / 2=50 \%
$$

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Mr. Johnson has two children. At least one of them is a boy who was born on a Tuesday. What is the probability that both children are boys?

## Overall Summary of Two-Child Paradox

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

$$
\{B G, B B\}
$$

$$
1 / 2=50 \%
$$

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

$$
\{B G, G B, B B\}
$$

$$
1 / 3=33.33 \%
$$

Mr. Johnson has two children. At least one of them is a boy who was born on a Tuesday. What is the probability that both children are boys?

## Overall Summary of Two-Child Paradox

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

$$
\{B G, \underline{B B}\} \quad 1 / 2=50 \%
$$

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

$$
\{B G, G B, B B\}
$$

$$
1 / 3=33.33 \%
$$

Mr. Johnson has two children. At least one of them is a boy who was born on a Tuesday. What is the probability that both children are boys?

$$
13 / 27=48.2 \%
$$

## Overall Summary of Two-Child Paradox

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

$$
1 / 2=50 \%
$$

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys? $1 / 3=33.33 \%$

Mr. Johnson has two children. At least one of them is a boy who was born on a Tuesday. What is the probability that both children are boys?

$$
13 / 27=48.2 \%
$$

Mr. Williams has two children. At least one of them is a boy who was born in October. What is the probability that both children are boys?

## Overall Summary of Two-Child Paradox

Mr. Jones has two children. The older child is a boy. What is the probability that the other child is also a boy?

$$
1 / 2=50 \%
$$

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys? $1 / 3=33.33 \%$

Mr. Johnson has two children. At least one of them is a boy who was born on a Tuesday. What is the probability that both children are boys?

$$
13 / 27=48.2 \%
$$

Mr. Williams has two children. At least one of them is a boy who was born in October. What is the probability that both children are boys?

$$
23 / 47=48.9 \%
$$

## Overall Summary of Two-Child Paradox

Can you come up with a formula to determine the probability the other child is also a boy if you are given a piece of information concerning the known boy that has $n$ equally likely outcomes?

## Overall Summary of Two-Child Paradox

Can you come up with a formula to determine the probability the other child is also a boy if you are given a piece of information concerning the known boy that has $n$ equally likely outcomes?

$$
\frac{2 n-1}{4 n-1}
$$

## THANKS FOR COMING!!!

## Formal Definition of Conditional Probability

* Probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* Shown here is the probability that you are in circle A given that we know you are in circle B.


$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## CONDITIONAL PROBABILITY

* probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* Example: a search and rescue team is looking for an injured skier. A call was made from the skier's phone within 5 miles phone tower A. What is the probability he is found within the forest?



## CONDITIONAL PROBABILITY

* probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* P (in forest given that a call was made within 5 miles of the cell phone tower) =



## CONDITIONAL PROBABILITY

* probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
* P (in forest given that a call was made within 5 miles of the cell phone tower) =

Area of red/Area of circle


