Sharing Discrete objects: can you split solid things equally?

Math Teacher: Mr. Swenson

Fair division: continuous or discrete?

- Fair division is the problem of dividing a set of goods or resources between several people who have an entitlement to them, such that each person receives his/her due share.
- Fair Divison is the process by which all parties through their own assessment consider their award "fair"
- For the purposes of fair division, an item is continuous if it can be awarded in parts in a fair division
- An item is discrete if cannot be awarded in parts.

Splitting Cake between 2 hungry people

1. Measure!

- Not easy, but effective and perfectly fair

2. Cut and Choose! (mom's favorite)
3. Continuous-Knife Method
4. "Shenanigans" (3 or more people)

Cut and Choose

- Two people needing to share the last piece of cake
- Step 1: Person A cuts the cake
- Step 2: Person B Chooses the cake
- Step 3: Everyone's happy!

Brief Sidebar about Cutting Cake:

- Sir Francis Galton
- "Nature" Magazine, Dec 20, 1906

Numberphile

The Continuous Knife
 - Pair up and grab a Hershey bar!

- Choose the shape that strikes your fancy, but don't eat it yet!
- The knife will slowly move from left to right, and either person in the group can stop the knife at any time.
- (borrow a $3^{\text {rd }}$ person to cut for you. If one of the splitters has to cut, the possibility of cheating arises.)
- Once the knife has been stopped, the person who stopped it gets the piece on the left.

Give it a shot!

3 or More People

- Adding people = adding complexity
- Reduction Method works for 3+ people

1. Choose order in which to participate (a whole other can of worms)
2. $1^{\text {st }}$ person cuts off what they believe to be a 'fair share'
3. $2^{\text {nd }}$ person has a choice: reduce the piece that has been cut already, or leave it intact. If left intact, the next person gets the same choice.
4. This continues through the $\mathrm{n}^{\text {th }}$ person. The last person to reduce the piece gets it! The piece-less people begin this process again.

Your turn!

- Grab another group (more than 2 people this time) and use the reduction method on a cookie!

1. Choose order in which to participate (a whole other can of worms)
2. $1^{\text {st }}$ person cuts off what they believe to be a 'fair share'
3. $2^{\text {nd }}$ person has a choice: reduce the piece that has been cut already, or leave it intact. If left intact, the next person gets the same choice.
4. This continues through the $n^{\text {th }}$ person. The last person to reduce the piece gets it! The piece-less people begin this process again.

What about things we ean't shouldn't cut??

Like this Grateful Dead autographed Fender!

The Bid-Divide Method (in a nutshell)

- Also known as the Method of Sealed Bids, often used in divorce courts or other scenarios of debated ownership.
- Each player submits a sealed bid for the item in question.
- The highest bid gets the item.
- The other person is compensated in cash for their "loss", according to their "fair share" of the item. (their bid, divided by 2)
- Not every share is equal, however they are all fair.

Scenario:

- Due to the new math requirement, either Adam's or Dennis' room needs to be cut in $1 / 2$ for the new teacher to share. Both Adam and Dennis love their rooms, and neither wants to have theirs cut in half. They agree to use the Bid-Divide method to decide who gets to keep the full room.

Scenario (continued)

- The high bidder gets to keep the room
- They both receive their fair share of the total "pot" which is $1 / 2$ their original bid.
- The winner ends up paying cash to the loser, so that they both receive their 'fair share' of the original "pot:

	Adam	Dennis
Bid		
Fair Share		
Item Value		
Settlement		
(fair share - item value)		

Leftovers!

Handout

Can easily be adjusted to any number of people and any number of items to share.

Item		Person 1	Person 2	Person 3	Value Pool	
1)	Bid $=$	\$	\$	\$	High Bid	\$
2)	Bid $=$	\$	\$	\$	High Bid	\$
3)	Bid $=$	\$	\$	\$	High Bid	\$
4)	Bid $=$	\$	\$	\$	High Bid	\$
Sum of Bids		\$	\$	\$		
					Total High Bids	\$
Share of Bids		\$	\$	\$	Total Shares of Bids	\$
Share of Value-Pool Bal		\$	\$	\$		
Total Fair Share		\$	\$	\$	Value-Pool Balance	\$

$\sqrt{v^{v^{2}}}$	1	\$	\$	\$
	2	\$	\$	\$
	3	\$	\$	\$
	4	\$	\$	\$

Total Value Awarded
Compensation Final Settlement Value

$\$ 1$		
$\$$	$\$$	$\$$
$\$$	$\$$	$\$$
$\$$	$\$$	$\$$
$\$ 10$		

Lets do it!

50" Flatscreen TV, top of the line!
2 extra personal days EACH YEAR

It can be expanded!

You can enter how many people are splitting (2-30), and how many items they are splitting (1-10)

It can be expanded!

You can add names of people and titles for objects to keep things straight, and the sheet will label the columns accordingly.

It can be expanded!

With 10 people and 3 objects, the sheet resizes to only show the cells being used to calculate something. Completely automatic, it only requires \# of people, \# of items, and bids.

Questions?

Thank
 you!

